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Synthetic-Aperture Radar

Figure 1: SAR imageof the Evergreen ship stuck on the SuezCanal, provided by Capella Space.

Remote sensing technologies such as Synthetic-Aperture Radar (SAR) have been widely used
monitor the surface of the Earth, in particular:
• ships and oil spills;
• drought and landslides;
• deforestation and fires;
• hurricanes, volcano eruptions and earth-quakes.
SAR sensors can be mounted on-board flyingplatforms such as satellites, aircrafts and drones.The main strength of SAR is that it operates evenin the presence of clouds, smoke and rain and without a light source.Moreover, with the advancements in the technology and signal processing methods, there are in-creasing business opportunities for satellites and drones equipped with lightweight, small, and au-

tonomous systems for on-board processing and generation of SAR images and subsequent broad-casting them, avoiding the time-consuming processing data at the receivers.

SAR Image Generation Algorithms
There are many SAR image generations algorithms, and they can be divided into two groups: FFT-
based and non-FFT-based.FFT-based algorithms are often more efficient, however, they introduce warping and distortion inthe final image, especially when the pixels are far away from the image center.Non-FFT-based, such as the Backprojection algorithm, have a higher computational complexity,however, the quality of the images is superior.
The Backprojection algorithm is, for this reason, chosen to implement a fault-tolerant and opti-mized architecture for SAR imaging.
The principle of the Backprojection algorithm is that every pulse has a contribution for every pixel ofthe image. For every pulse, the contribution is calculated and accumulated in the pixel value. Thesecalculations are independent and can be performed in parallel.

(a) Orange PiZero. (b) Raspberry Pi4. (c) Khadas Vim 3.

(d) Pynq-Z2. (e) Ultra 96.
Figure 2: Single board computers, in the first row, and XilinxSoC-FPGA boards, in the bottom row, used in the Backprojec-tion algorithm implementation.

Implementation of the Backpro-
jection Algorithm
Devices used for on-board processing must re-spect the following requisites:

• Size;
• Weight;
• Power consumption;

These requisites are also known as SWaP. Theplatforms used to implement the Backprojectionalgorithm are the following:
• Pynq-Z2;
• Ultra96;
• Orange Pi Zero;
• Raspberry Pi B;
• Khadas Vim 3.

There are two different implementations of theBackprojection: single-core and multi-core. Thecostly operations of the algorithm, sine and co-sine, as seen in the profiling section, were alsoimplemented in two different ways: floating-
point and fixed-point. The execution time ofeach implementation and respective power con-sumption of the board is in Table 1. For eachboard, themost efficient implementation is high-lighted.

Table 1: Performance and power consumption according to device and implementation.
Board sin/cos core t [s] p [mW] e [mWh]

Pynq-Z2

float single-core 473 1715 225fixed-point single-core 125 1720 60float multi-core 238 1840 122fixed-point multi-core 63 1810 32

Ultra96

float single-core 273 2035 154fixed-point single-core 124 2020 69float multi-core 69 2205 42fixed-point multi-core 31 2130 18

Orange Pi Zero

float single 154 1210 52fixed single 174 1210 58float multi 38 2150 23fixed multi 44 2075 26

Raspberry Pi B

float single 57 3397 54fixed single 73 3381 68float multi 28 3652 28fixed multi 38 3631 38

Khadas Vim 3

float single 47 2660 35fixed single 43 2720 32float multi 11 5660 17fixed multi 12 5610 19

The most efficient board is the Khadas Vim 3, with 17 mWh. A close second is the Ultra96, with18 mWh. This is a software implementation, which means the FPGA fabric of the Ultra96 wasnot used. With an accelerator, the Backprojection algorithm implementation can be even moreefficient, highlighting the potential of hardware accelerators.

Operation Time [ns] Execution Time [%]
Sqrt 50 1.3Sin+Cos 3108 84.3Misc 530 14.4Total 3688 100.0
Table 2: Execution times for the operations in the im-plementation of BP.

Backprojection Algorithm Profiling

• The profiling of the BP algorithm running on a sin-gle core of the ARM A9 processor of the target Zynqdevice was required to determinewhich parts of thealgorithm should be accelerated.
• The implementation of the BP algorithm adopted isavailable in [1].
• The best option for the acceleration are the sine and
cosine functions.

SAR Backprojection Accelerator

Resource Utilization Total on Zynq-7020 [%]
BRAM18K 2 1.0%DSP48E 34 15.0%LUTs 13986 26.0%
Table 3: Estimate of resources required to implement theBP accelerator reported by Vivado HLS.

An accelerator was developed for the Backpro-jection algorithm, targeting the most time con-suming operations and was specified using Xilinx
HLS.
• Using HLS and maintaining the floating-pointrepresentation allows to reutilize parts of thesource code and guarantees that the result isthe same as the original implementation.
• The accelerator was implemented as a singleIP core, where it receives the range values andsamples for 512 pulses.
´The range values are double precision floating-point valueswhereas the samples are complex single-precision floating-point values.

Figure 3: Organization of the accelerator.

The accelerator is organized as follows:

•• The first loop obtains the input data for the range values fromthe streaming interface, computes their product to serve asinput to trigonometric functions and stores the result in localmemories.
• The second loop receives the pulse samples also via thestreaming interface, performs the complex multiplicationand writes the result to the output streaming interface.
Figure 3 illustrates the sequence diagram of the relations be-tween the building blocks of the accelerator.Table 3 summarizes the FPGA resources required to imple-ment the BP accelerator from the specification. The HLS toolproduced a circuit design capable of operating at 100 MHz, re-sulting in an IP corewhich requires aminimumof 60 clock cyclesin latency, of which 24 cycles are required by the CORDIC IP.

• The accelerator was tested on a Zynq-7020 device installed on a Pynq-Z2;
• The processing times for the computations made by the accelerator in software required1667.3 us, whereas the same computations in the accelerator required only 37.31 us, a reductionof 44.68×;
• The processing time for a 512x512 image was 7.7× faster with the accelerator;
• The average power consumption of the whole system is 1.796 W.

Future Work

• The accelerator used floating-point units, which guarantee the same results but are slower thanfixed-point units. An accelerator for the Backprojection algorithm in fixed-point is currently underdevelopment.
• Reducing data transmission and increasing the number of operations performed in the acceleratorand as much as possible contributes to a more efficient implementation.
• Embedded systems are subject to faults, especially those in space which are under the effectsof radiation. Fault tolerance mechanisms are necessary to ensure the proper functioning of thesystem. Traditional fault tolerance mechanisms use redundancy and are algorithm-agnostic. Amethodology to develop fault tolerance mechanisms customized to the algorithmwill be studied.This methodology takes into consideration the fact that not all variables have the same impact intothe final image and uses that when protecting the algorithm, using reduced-precision redundancyand approximations, thus minimizing the overhead of the mechanism in the system.
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