
A gap time model based on restricted cubic splines
with a zero-recurrence proportion

Ivo Sousa-Ferreira1, Cristina Rocha1, Ana Maria Abreu2

1DEIO & CEAUL, Faculdade de Ciências, Universidade de Lisboa, Portugal
2DM & CIMA, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Portugal

ivo.ferreira@staff.uma.pt; cmrocha@fc.ul.pt; abreu@staff.uma.pt

Introduction
Recurrent events data arise frequently in medical studies where each subject may experience a particular

event repeatedly over time. Recently, considerable attention has been devoted to modelling the gap times. Here,
we consider the classic assumption that the number of recurrent events up to a given time follows a NHPP, for
which the gap times are generally not independent. In this sense, we follow the approach of Zhao and Zhou [3],
wherein the recurrence process is derived from a NHPP. However, we assume a completely parametric baseline
rate function in which the covariates have a multiplicative effect.

The main challenge here is to select the most appropriate baseline form, which sometimes is not flexible
enough to capture how the rate evolves over time. Motivated by Royston and Parmar [2], we propose to use
restricted cubic splines (RCS) to overcome this shortcoming.

Restricted cubic splines

A RCS function is a collection of piecewise cu-
bic polynomials joined at a pre-defined number of
internal knots, that it is also constrained to be lin-
ear beyond the boundary knots to ensure a sensible
form (see Figure 1).

For pre-defined m distinct internal knots r1 <
. . . < rm, with rmin < r1 and rmax > rm boundary
knots, the RCS function of a given observed vari-
able x may be written as

s(x;γ) = γ0 + γ1x +
m∑
l=1

γl+1vl(x), (1)

where γ = (γ0, γ1, . . . , γm+1)
′ is the parameters

vector and vl(x) is known as the lth basis function.
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Figure 1: Estimated RCS function for pseudo-random data
generated from a 4th degree polynomial plus error from a nor-
mal distribution with mean 0 and standard deviation 2.5.

Notation

I There are n independent subjects in study and each one experiences Ki (i = 1, . . . , n) recurrences of an
event;

I Tik is the time since the beginning of the study until the occurrence of the kth event (k = 1, . . . , Ki);

I Yik = Tik − Ti,k−1, with 0 ≡ Ti0 < Ti1 < . . . < TiKi
, is the gap time between two consecutive events of

the ith subject;

I zik =
(
zik1, . . . , zikp

)′ is a vector of covariates for the ith subject with respect to the kth event and
β =

(
β1, . . . , βp

)′ is a vector of regression coefficients (latency part of the model);

I π is the probability of being a recurrent subject (susceptible) and 1 − π is the probability of being a zero-
recurrence subject (non-susceptible);

I It is natural to assume that π can be written in terms of the covariates via a logistic function. In our case,
it follows that πi = 1/[1 + exp(−α′zi1)], where α =

(
α1, . . . , αp

)′ is a vector of regression coefficients
(incidence part of the model).

Model formulation
Based on Zhao and Zhou [3], the recurrence process is assumed to be a NHPP with independent increments.

Then, we consider a multiplicative model in which the marginal rate function is given by

h(y|ti,k−1, zik) = h0(y + ti,k−1) exp(β
′zik), (2)

where h0(·) > 0 is a baseline rate function.
Following the approach of Royston and Parmar [2], we propose to model the log-cumulative baseline rate

function as a RCS function of log time, which provides analytically tractable expressions. From (2), the cumu-
lative rate function is

H(y|ti,k−1, zik) =
[
exp
{
logH0(y + ti,k−1)

}
− exp

{
logH0(ti,k−1)

}]
exp(β′zik)

=
[
exp
{
s
(
log(y + ti,k−1);γ

)}
− exp

{
s
(
log ti,k−1;γ

)}]
exp(β′zik),

where H0(·) > 0 is a cumulative baseline rate function and s(log t;γ) is the RCS function (1) of log time.
In some scenarios, it might exist a proportion of the population under study that becomes recurrence free.

Therefore, we consider that two cases can occur:

I if Ki > 1, subject i experiences at least one recurrence, so he is a recurrent subject;

I if Ki = 1, subject i may either be a recurrent subject with probability πi or a zero-recurrence subject
with probability 1− πi.

The inferential procedure is based on the maximum likelihood (ML) method, assuming a non-informative
right-censoring mechanism. For each subject i, we define δi = I(Ki > 1) and K∗i = max(Ki − 1, 1). The
likelihood function is expressed as

L =

n∏
i=1

{
πi

K∗i∏
k=1

f (y|ti,k−1, zik)

}δi{
1− πi + πiP (Yi1 > y|Ti0 = 0)

}1−δi
,

where f (y|ti,k−1, zik) is the probability density function and P (Yi1 > y|Ti0 = 0) is the (proper) survival func-
tion of the first gap time. The computational implementation was developed in R software [1], version 4.1.0,
where the ML estimates were obtained using the Broyden–Fletcher–Goldfarb–Shanno maximization procedure.

An application to re-hospitalization data
The re-hospitalizations data represents the gap times (in

days) of successive readmissions of 403 patients diagnosed
with colorectal cancer after receiving surgery to remove their
tumours. The maximum follow-up time was 2176 days (about
6 years). A total of 861 readmissions were recorded, ranging
from 1 to 22, with mean 2.3 and median 1.0. About 49.4% of
the patients had no recurrence at all (see Table 1). The data are
available in the R [1] library frailtypack.

Table 1: Information on the first 4 recurrences.

Number of
subjects

Recurrence number
1 2 3 4

At risk 403 204 99 54
Who experienced 204 99 54 33

% of censoring 49.4 51.5 45.5 38.9

Here, 4 covariates were included in the model: chemotherapy; gender; Dukes’ stage; and Charlson comor-
bidity index. In preliminary modelling, without covariates and zero-recurrence proportion, we use the Akaike
(AIC) and Bayesian (BIC) information criteria to guide the choice of number of d.f. required to capture the
baseline rate function. Thus, models with between 1 to 4 d.f. were fitted. The AIC values (6883.1, 6871.3,
6872.4 and 6872.9) and BIC values (6892.6, 6885.5, 6891.4 and 6896.7) indicate that 2 d.f. (1 internal knot) is
the most adequate choice. Then, the proposed flexible model that accounts for zero-recurrence subjects was
applied and the results are summarized in Table 2.

Figure 2: Illustration of colorectal cancer. Image adapted
from: https://tinyurl.com/colonrcancer.

Table 2: Parameters estimates of the flexible marginal rate model
with 1 internal knot and a zero-recurrence proportion.

Parameter Estimate ŜE p-value

γ0 -5.868 0.642
γ1 1.019 0.170
γ2 0.001 0.005

Chemo -0.048 0.115 0.677
Gender -0.444 0.111 <0.001

Dukes’ stage

R
at

e
co

m
po

ne
nt

(l
at

en
cy

)

C 0.198 0.126 0.116
D 0.641 0.147 <0.001

Charlson index
1–2 0.357 0.208 0.087

3 0.528 0.117 <0.001

Intercept 0.180 0.268 0.500
Chemo -0.341 0.266 0.200
Gender -0.163 0.248 0.511

Dukes’ stage

L
og

is
tic

co
m

po
ne

nt
(i

nc
id

en
ce

)

C 0.329 0.261 0.207
D 1.979 0.593 <0.001

In our model, the reference group consists of male patients who did not receive chemotherapy, with Dukes’
stage A−B and Charlson index 0. For this group the zero-recurrence proportion is 1− (1/{1+exp(−0.180)}) =
0.455. The chemotherapy coefficient estimates are negative in both rate and logistic components with a non-
significant effect on the time to readmission. This suggest that, although chemotherapy diminishes the rate of
readmission, its effect on the readmission process is negligible. In the rate component, recurrent females have a
significantly lower risk of readmission compared with recurrent males. The other two important risk factors in
this component are the Dukes’ stage D and the Charlson index ≥ 3. In relation to the logistic component, only
Dukes’ stage D has a significantly increasing effect, which means that patients in this stage have lower chances
of being recurrence free.

The Cox-Snell residuals were used to informally assess the overall goodness of fit of the model. From the
left plot of Figure 3 it is confirmed that the model provides a good fit of the data, since the residuals behave
as a straight line through the origin with slope 1. The model-based estimate of the marginal rate function is
depicted in the right plot of Figure 3, which exhibits a right-skewed unimodal shape. This means that the
re-hospitalization rate increases during the first 30 days after the surgery and decreases thereafter.
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Figure 3: Cox-Snell residuals (left) and estimated marginal rate function (right) of the proposed model with m = 1 knot.

Conclusion and further work
X The proposed model is innovative in the sense that a RCS function is used to deduce the conditional distri-

bution of the gap times between recurrent events;

X A zero-recurrence proportion is also incorporated to conveniently take into account the existence of sub-
jects that will never experience any recurrence.

X In the application to the re-hospitalization data, the new model revealed to be very flexible, only requiring
1 internal knot to have an excellent fit to the data;

X For future research it would be interesting to include a random effect term in order to deal with the unob-
served heterogeneity across subjects (which originates a frailty model).
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